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Abstract

Multiple imputation is a simulation-based approach for the analysis of data with missing

observations. It is widely utilized in many settings and preeminent among general approaches

when the analytical method does not involve a likelihood function or this is too complex. We

consider a multiple imputation method based on the estimation of conditional quantiles of

missing observations given observed data. The method does not require the speci�cation of

a likelihood and has desirable features that may be useful in some practical settings. It can

also be applied to impute dependent, bounded, censored and count data. In a simulation

study it shows some advantage over the alternative methods considered in terms of mean

squared error across all scenarios except when the data arise from a normal distribution where

all methods considered perform equally well. We present an application to the estimation of

percentiles of body mass index conditional on physical activity assessed by accelerometers.
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1 Introduction

Missing data are frequent in social and health sciences and often pose issues in data analysis.
Analyses of the subset of the data with complete observations may lead to biased and ine�cient
inference. Numerous approaches have been suggested, and those based on multiple imputation
or the likelihood function are foremost among them. Both are generally applicable, though the
likelihood-based approaches are clearly not viable when the analytic method does not involve a
likelihood function or the likelihood is intractable.

Multiple imputation has been applied to a wide variety of missing data problems described
in several books [1, 2, 3, 4, 5] and papers [6, 7, 8, 9, 10, 11, 12, among others]. Methods for
imputing multivariate data are often based on distributional assumptions about either the joint
multivariate distribution of the data or a fully conditional speci�cation of it.

Methods that relax these assumptions have also been proposed. [13] described a Bayesian
approach based on a Pólya tree prior, a generalization of the Dirichlet process, that allows for
imputation of continuous, discrete, and ordinal data with ignorable non-response. [14] used non-
parametric Markov chain bootstrap to impute scalar and multivariate outcomes when the data are
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missing completely at random. In non-Bayesian settings [15] proposed a non-parametric method
for the imputation of conditional mean, whose resulting estimator is shown to be consistent
and asymptotically normal. [16] presented a non-parametric and a semi-parametric smoothing
method to obtain multiple imputation estimators based on local resampling techniques. Their
methods require setting smoothing parameters, and the authors give guidelines as to how to
select them. [17] described a semi-parametric imputation approach based on mixtures of normal
distributions, which utilizes the algorithm proposed by [18]. Recently, [19] suggested a non-
parametric kernel estimator of the conditional quantiles within the context of empirical likelihood
inference with missing observations for parameters de�ned by general estimating equations.

In this paper we present an imputation method that is based on the estimation of conditional
quantiles of the missing observations given the observed data and does not require the full
speci�cation of a probability model. As [20] noted, �[t]he process of specifying the imputation
model is a scienti�c modeling activity on its own, that comes with its own model building
principles.� The methods proposed may facilitate this modeling activity in some real-life settings.

The following section introduces the method for the simplest case of one only incomplete
variable. Some practical suggestions for the estimation of the conditional quantiles are given in
section 3. Section 4 extends the method to the general case of multiple incomplete variables.
Section 5 describes the setup and the results of a simulation study. Section 6 illustrates an appli-
cation to the study of the association between obesity and physical activity with epidemiological
data. In section 7 we summarize the main features of the proposed method and o�er few �nal
remarks.

2 A Single Incomplete Variable

We �rst consider the simple, though often unrealistic, case in which only one variable has missing
observations while all the others are completely observed. We present the general case of multiple
incomplete variables in section 4.

Let yi, i = 1, . . . , n, be observations from n independent random variables Yi, and xi =
(xi,1, . . . , xi,p)

′ be a p-dimensional vector of covariates. We assume that the conditional cumula-
tive distribution function of Yi given xi, F (yi|xi), is continuous.

Suppose the vector xi is completely observed for all i ∈ {1, . . . , n}, while yi has missing
observations. Let I ⊂ {1, . . . , n} be the non-empty set of indexes corresponding to the units with
missing values for yi and C ⊂ {1, . . . , n} the complement of the set I, i.e. the non-empty set of
indexes of the observed values for yi. Here and throughout we further assume that the missing-
data mechanism is ignorable, i.e., the probability that Yi is observed given xi is conditionally
independent of Yi [21].

In multiple imputation each missing value yi, with i ∈ I, is replaced by M independent
imputed values to generate M completed data sets [1, 2]. The constant integer M is usually

set between 5 and 10. Each imputed value, ŷ
(m)
i , m ∈ {1, . . . ,M}, is generated by drawing

one replicate from F (yi|xi), which is generally assumed to have a known form (e.g. normal,
lognormal). Instead, in the proposed method the form of F (yi|xi) is left unspeci�ed. Let

QYi|xi
(u) = F−1(u) = inf{y : F (yi|xi) ≥ u} (1)

be the u-th quantile of the conditional distribution of Yi given xi. The proposed multiple impu-
tation method can be summarized in the following steps:

1. For each missing value yi, with i ∈ I, generate u from a uniform distribution over (0, 1).



2. Impute ŷ
(m)
i = Q̂Yi|xi

(u), where Q̂Yi|xi
(u) is a consistent estimate of QYi|xi

(u) obtained by
using all units with i ∈ C. (Details are given in section 3.)

3. Repeat steps 1 and 2 for m = 1, . . . ,M , to generate M completed datasets.

Step 2 above requires a point estimate of QY |x(u). Any other inference about QY |x(u) (e.g.
standard errors, con�dence intervals) is unnecessary.

Variability due to imputation is introduced by generating an independent uniform random
draw for imputing each missing value in each dataset in step 1 and by then creatingM completed
datasets in step 3.

After multiple completed datasets have been generated, estimation of any quantity of interest,
θ, can be carried out as usual [1]. The M completed datasets can be analyzed separately with
any statistical method of interest, and the resulting M sets of point estimates θ̂(m) and estimates
for the sampling variance V̂ar(θ̂(m)), m = 1, . . . ,M , can then be combined according to Rubin's
rules. The combined point estimate is

θ̂ =
1

M

M∑
m=1

θ̂(m) (2)

with estimated sampling variance

V̂ar(θ̂) =
1

M

M∑
m=1

V̂ar(θ̂(m)) +
M + 1

M(M − 1)

M∑
m=1

(θ̂(m) − θ̂)2 (3)

The intuition behind the proposed imputation method is based on a well known result, stated
here as Lemma 1 [22, p. 52�54].

Lemma 1 (Probability integral transformation) Let W be a variable with continuous cumula-

tive distribution function FW (w). The probability integral transformation U = FW (W ) is uni-

formly distributed over (0, 1).

Note that Lemma 1 does not assume that FW (w) is absolutely continuous nor strictly increasing.
Step 2 of the imputation method is a direct application of the result of Lemma 1. Proposition 1
gives a formal justi�cation for this step, and its proof is given in the Appendix.

Proposition 1 (Consistency) If Q̂Yi|xi
(u)

P−→QYi|xi
(u) for every u ∈ (0, 1), then Ŷ

(m)
i

D−→ Yi for
every i ∈ {1, . . . , n} and every m ∈ {1, . . . ,M}.

Proposition 1 states that if Q̂Yi|xi
(u) in step 2 of the imputation method is a consistent estimator

of QYi|xi
(u), then the asymptotic conditional distribution of each imputed value Ŷ

(m)
i given the

observed values xi is equal to the conditional distribution of the unobserved values Yi given xi.



3 Conditional Quantile Estimation

In this section we give some practical suggestions about the estimation of the conditional quantile
QYi|xi

(u) in step 2 in section 2. These may facilitate the use of the proposed imputation method
in various real-life settings.

If there exist a parameter vector βu, dependent on u, such that

QY |x(u) = x′βu (4)

then the conditional quantile, QY |x(u), can be easily estimated by optimizing a mathematical
linear programming problem [23]. The estimation requires no assumptions on the regression
residuals and can be carried out with widely available statistical software (e.g. R, SAS, Stata).

3.1 Non-parametric models

Though the linear quantile regression model (4) makes no assumption about the distribution
of the regression residual, it assumes a linear parametric form for the relationship between the
quantile of the incomplete variable being imputed, QY |x(u), and the covariates, x. When this
assumption is deemed untenable, non-parametric methods could be used instead. Let us consider
the non-parametric model

QY |x(u) = hu(x)

where hu is an unknown and unspeci�ed non-random function dependent on u. The conditional
quantile QY |x(u) can be estimated by using a consistent estimator of hu. Among numerous non-
parametric methods, one may consider quantile smoothing splines [24], which are de�ned as the
solution to

min
h∈H

∑
i∈B

ρu{yi − h(xi)}+ λ

{∫ 1

0

∣∣∣∣ d2dx2
h(x)

∣∣∣∣ dx

}
where ρu(t) = |t|− (2u−1)t, the class H is appropriately chosen, and the constant λ controls the
degree of smoothing. When λ is su�ciently large, the solution ĥu is the linear u-quantile �t to
the data. The set of solutions for any given u and λ can be e�ciently computed via parametric
mathematical linear programming.

3.2 Variable Transformation

A possibly simpler alternative to quantile smoothing splines is to transform the outcome variable
y through some convenient function, g(y). In many problems it may be simpler to model the
relationship between outcome and covariates after the outcome has been transformed. The
logarithm and square root, for instance, are popular transforms of right-skewed, non-negative
outcomes. Suppose there exists a known non-decreasing function g and a vector βu, dependent
on u, such that

Qg(Y )|x(u) = x′βu (5)

where Qg(Y )|x(u) indicates the conditional quantile of the transformed outcome. This can be
easily estimated by regressing g(y) on x with linear quantile regression. Estimates for the con-
ditional quantile of the untransformed outcome, QY |x(u), can then be obtained by applying the
equivariance property of quantiles [23]

QY |x(u) = g−1{Qg(Y )|x(u)} (6)



which holds for any non-decreasing function g and constant u simply because P (Y ≤ y|X =
x) = P{g(Y ) ≤ g(y)|X = x} for every random vector (Y,X).

The selection of the function g should aim to linearize the relationship between the condi-
tional quantile the covariates and constrain its estimates within the support of the variable to
be imputed. For example, [25] propose applying a logistic transform to model outcome variables
which take on values that are bounded within a known interval, such as percentages bounded
between 0 and 100, math achievement scores, and depression scales. [26] propose a power trans-
formation, g(y) = (yλ − 1)/λ if λ ̸= 0 and g(y) = log(y) if λ = 0, which is easy to implement
and requires no distributional assumptions. Other ad hoc transformations can also be applied.

3.3 Dependent Data

Sampling designs may sometimes induce dependence among the data. For example, cluster,
multilevel, and repeated measures (or longitudinal or panel) designs are frequently adopted. In
these, observations within each cluster, level or unit repeatedly measured may be dependent on
one another.

As shown by [27], the conditional quantile estimator is consistent when data are dependent.
Proposition 1 therefore holds with dependent data and the proposed imputation method can be
applied unchanged. In any given real application other related methods could also be considered
[28, 29, 30].

3.4 Censored Data

The quantile regression approach can also be utilized when missing values occur because of �xed
[31] or random censoring [32, 33, 34].

3.5 Discrete and Categorical Data

Predictions from quantile regression are generally appropriate for continuous, not discrete, out-
come variables. When the incomplete variable to be imputed is discrete and takes on a �nite
number of unique values with positive probability, its quantiles are themselves discrete and can-
not be modeled directly as a continuous function of a set of covariates. When the outcome is
a count, the quantile regression method proposed by [35] could prove useful. In other settings
binomial, ordinal, or multinomial regression may be appropriate.

4 Multiple Incomplete Variables

In this section we extend the proposed method to the more realistic scenario where multiple
variables have missing observations.

We �rst extend the notation. Let yi = (yi,1, . . . , yi,k)
′, with i = 1, . . . , n, denote replicates of

a k-dimensional random vector Yi = (Yi,1, . . . , Yi,k)
′. Let Yi,(−j) indicate the (k− 1)-dimensional

vector de�ned as Yi without its j-th element. Suppose the vector yi has missing observations.
For each element j, let Ij ⊂ {1, . . . , n} be the non-empty set of indexes corresponding to the
units with missing values for yi,j . Let Cj = {1, . . . , n}\Ij be the set of indexes of the observed
values. As in section 2, suppose the vector xi = (xi,1, . . . , xi,p)

′ is completely observed.
The proposed method for multiple incomplete variables follows the one proposed by [36] and

is summarized in the following steps:

1. For each missing value yi,1, with i ∈ I1, generate u from a uniform distribution over (0, 1)

and impute ŷ
(m)
i,1 = Q̂Yi,1|xi

(u) obtained by using all units with i ∈ C1.



2. For each j = 2, . . . , k, and for each missing value yi,j , with i ∈ Ij , generate u from a

uniform distribution over (0, 1) and impute ŷ
(m)
i,j = Q̂Yi,j |yi,1,...,yi,j−1,xi

(u) obtained by using
all units with i ∈ Cj .

3. For each missing value yi,j , with i ∈ Ij , generate u from a uniform distribution over (0, 1)

and impute ŷ
(m)
i,j = Q̂Yi,j |yi,(−j),xi

(u) obtained by using all units with i ∈ Cj .

4. Repeat step 3 for R complete cycles of j = 1, . . . , k. At each cycle, replace previous
imputations with updated ones. This creates a single imputation sample.

5. Repeat steps 1 to 4 for m = 1, . . . ,M , to generate M completed datasets.

Steps 1 and 2 initialize the algorithm by imputing all missing values for each of the incomplete
variables. Then steps 3 and 4 impute updated values for each variable in turn conditional on all
other variables by using both observed and latest-imputed values. The cycle over all incomplete
variables is repeated R times to create one completed dataset. Step 5 generates theM completed
datasets.

As described by [36], the proposed approach is similar to HOMALS-like algorithms, which
usually convergence fast during the �rst few cycles [37]. Based on our simulation study, we
expect R = 10 cycles be generally su�cient for the proposed method.

As for the single incomplete variable case described in section 2, variability is introduced
by creating M completed datasets and by generating an independent uniform random draw for
imputing each missing value in each dataset. Additional variability enters at step 4, when missing
values for each of incomplete variable are imputed repeatedly over R cycles within each of the
M datasets. This re�ects the fact that information is missing from the covariates [36].

As noted by [38, pp. 59�60], the complete stochastic mechanism for generating the random
response given a set of covariates de�ned by Y = x′βu suggests that the elements of the vector βu
are dependent, for they are all generated by one replicate u of a random variable uniformly dis-
tributed over (0, 1). Yet, unlike other imputation methods, which typically assume multivariate
normality of the regression coe�cients, their marginal distributions can take arbitrary forms.

Since the imputation method proposed is not based on modeling a fully conditional likelihood,
it does not incur the risk of not converging to a sensible stationary distribution, which on the
contrary may occur, if rarely, when the separate conditional-likelihood models are not compatible
with any joint distribution [39].

5 Simulation Study

We examined the performance of the proposed and other imputation methods in a simulation
study where we pseudo-randomly generated a large number of datasets under di�erent, known
scenarios. In the following subsections we describe the scenarios, the mechanisms to assign
missing data, the methods to analyze the data, and the criteria to evaluate the adequacy and
e�ectiveness of the alternative imputation methods. The study was performed with the statistical
computer software R [40].

5.1 Generating Complete Datasets

First we generated complete datasets. Each dataset was comprised of n independent observations,
with n ∈ {100, 500}, on an outcome variable Y and four covariates X = (X0, X1, X2, X3)

′, with

Y = X ′β + ε , (7)



where β = (β0, β1, β2, β3)
′ = (0, 1, 2, 3)′, X0 was the constant intercept, X1 and X2 were gen-

erated from uniform distribution as X1 ∼ U(0, 1) and X2 ∼ U(−1, 2), and X3 and the error
term, ε, were generated from each of three di�erent distributions: a standard normal, N(0, 1), a
t-Student with 3 degrees of freedom, t3, and the chi-square with 1 degree of freedom, χ2

1.
We focused on the performance of the various imputation methods in the simplest case in

which all quantiles of the variable Y , or any non-decreasing transformation of it, were linear
combinations of the covariates. A discussion on non-linear relationships is beyond the scope of
the present paper.

5.2 Generating Missing Observations

In each complete dataset we assigned missing values to the variable y and the variable x3 under
each of three non-response generating mechanisms. Each observation for y and each observation
for x3 were replaced with missing data with probability p, where p = 0.3, p = 0.5, and logit(p) =
−1 + x1. In the �rst two cases the missing indicator was independent of x and y, missing
completely at random [21], while in the third it depended on x1 but not on y or x3, missing at
random. The non-ignorable missing mechanism was not considered in the present study, since
all the imputation methods compared herein assumed that the mechanism was ignorable.

5.3 The Simulated Scenarios

Overall, we considered 18 di�erent scenarios, which arise from combining two sample sizes, three
distributions of error terms, and three non-response generating mechanisms. For each scenario
we generated 1000 datasets.

5.4 Imputing the Data

We imputed each incomplete dataset by applying the proposed imputation method and three
methods implemented in MICE library for the statistical package R [41]: Bayesian linear re-
gression, predictive mean matching, and unconditional mean imputation. We set the number of
imputations M = 5.

5.5 Analyzing the Data

In each of the �ve completed datasets we estimated the regression model (7). We applied four
regression methods: 0.25-quantile regression, 0.50-quantile regression, 0.75-quantile regression,
and least-squares linear regression. Then we combined the estimates for the regression parameter,
β, and those for the marginal mean and variance of Y , µ and σ2.

5.6 Evaluation Criteria

In each of the 18 scenarios, each comprised of 1000 simulated datasets, we evaluated the adequacy
and e�ectiveness of the alternative multiple imputation methods. Consider the parameter vector
θ = (β0, β1, β2, β3, µ, σ

2)′. Let θi, i = 1, . . . , 6, denote the ith element of θ. For each parameter θi,
let θ̂i,j be the combined estimate from the jth completed datasets and θ̃i,j the estimate from the
jth complete dataset before generating the missing observations. We evaluated the performance
of the imputation methods with respect to bias, variance, and mean squared error (MSE) de�ned



as follows:

Bias(θ̂i) =
1

1000

1000∑
j=1

(
θ̂i,j − θ̃i,j

)

Var(θ̂i) =
1

999

1000∑
j=1

(
θ̂i,j −

1

1000

1000∑
k=1

θ̂i,k

)2

MSE(θ̂i) =
1

1000

1000∑
j=1

(
θ̂i,j − θ̃i,j

)2
These are usually de�ned by replacing θ̃i,j with θi in the expressions above. With some abuse of
terminology, we preferred to adopt the evaluation criteria above, which we believed were more
relevant measures of the performance of the methods considered.

5.7 Simulation Results

For brevity, only a subset of all the simulation results is summarized in tabular form. The tables
show the comparison of the proposed method with the best competing alternative only, which
in our simulation was predictive mean matching. The tables report the observed bias, variance,
and mean squared error of the estimators of the regression coe�cients and of the marginal mean
and variance when the sample size was 500. In Tables 1 to 3 the data were generated under
missing completely at random mechanism with probability of non-response p = 0.3 from the χ2

1,
the t3, and the N(0, 1) distribution, respectively. In Table 4 the missing data were missing at
random from the χ2

1 distribution.
In this simulation the proposed method consistently showed slight bias and small variance.

When data were generated from a N(0, 1) (Table 3), all methods performed equally well. In all
other scenarios (Tables 1, 2, 4) the mean squared error of the best competing alternative was
greater than that of the proposed method.

As stated at the beginning of the present section, the results about the other two imputation
methods, namely Bayesian linear regression and unconditional mean, are not reported in the
tables. The former was comparable to predictive mean matching, though it showed erratic
behavior in some of the simulation scenarios. The latter showed dramatically larger bias and
variance than any other method considered. The results for sample size 100 and for a probability
of non-response p = 0.5 were analogous and not shown.

6 An Example: Obesity and Physical Activity

The National Health and Nutrition Examination Survey (NHANES) is conducted by the Centers
for Disease Control and Prevention since the early 1960's and uses a strati�ed, multistage prob-
ability design. During the 2003-2004 study cycle, it included an interview, physical examination,
and laboratory tests.

Our research interest lay in the association between obesity and physical activity. We consider
body mass index (BMI, kg/m2) as a measure of obesity. Physical activity was assessed through
accelerometers, an increasingly popular instrument [42]. Data from the accelerometers were used
to calculate time spent in moderate-to-vigorous physical activity (MVPA, metabolic equivalent
of task, or MET, in minutes per day).

We excluded males, participants less than 18 or greater than 49 years old, participants cur-
rently taking anti-hypertension medications, pregnant women, participants who are prevented



by impairment from walking, and participants with a history of stroke, congenital heart failure,
angina, emphysema, or chronic bronchitis because these factors will a�ect the physical activity
assessments. The �nal sample consisted of 1,227 individuals. Age was completely observed, BMI
had 1,146 valid observations, and MVPA 362.

The sample distributions of BMI and MVPA were markedly right-skewed (third standard-
ized moment respectively equal to 1.12 and 1.66) and leptokurtic (fourth standardized moment
equal to 4.47 and 5.83). Given the sizable skewness and leptokurtosis of the sample marginal
distributions, the use of imputation methods based on the multivariate normality assumption
seemed inappropriate. Moreover, any potential issues resulting from the likely violation of this
assumption could be exacerbated at the extreme percentiles where our inferential interest lay.

We utilized the proposed imputation method. The pair-wise relationships between age, BMI
and MVPA were non-linear. After taking the logarithm of BMI and MVPA, however, they
seemed approximately linear at all quantiles. We therefore utilized log(BMI) and log(MVPA)
and applied the imputation model (5).

As described in section 3.2, we selected the logarithmic transform because it linearized the
relationships and ensured that the imputed values for BMI and MVPA were all plausible (i.e.
positive). The transform did not aim at normalizing the shape of the conditional distributions
of the variables to be imputed. This would have been unnecessary, for the proposed imputa-
tion method is valid under any distribution. Indeed, the sample distributions of log(BMI) and
log(MVPA) were still far from normal.

Even if the missing data pattern was not monotone, BMI had substantially fewer missing
values than MVPA. Therefore, in steps 1 and 2 in section 4 we �rst imputed log(BMI) from age
and then log(MVPA) from age and the imputed log(BMI). In steps 3 and 4 we performed R = 10
complete cycles, and in step 5 obtained M = 5 �nal completed datasets.

In each of the �ve completed dataset, we estimated the quantile regression model

Qlog(BMI)(p) = βp,0 + βp,1 age+ βp,2 log(MVPA)

where Qlog(BMI)(p) denotes the p-quantile of the conditional distribution of log(BMI) given age
and log(MVPA), and βp = (βp,0, βp,1, βp,2)

′ is the regression coe�cient vector to be estimated
for the p-quantile. We considered �ve quantiles, p = 0.10, 0.25, 0.50, 0.75, and 0.90. The
strati�ed, multistage probability design, was taken into account in the estimation. Estimation
of the regression coe�cients included the sampling probability weights available in the dataset.
Estimation of the standard errors was performed by generating 100 strati�ed, cluster bootstrap
samples.

Figure 1 shows the �ve estimated percentiles of BMI at 29 years, sample median age, on the
double-log and natural scale. The latter were obtained by simply applying the inverse transform
(i.e. the exponential function) to the estimates for Qlog(BMI)(p), thus exploiting the equivariance
property of quantile regression shown in equation (6).

We were particularly interested in the higher quantiles, which corresponded to the obese
portion of the population whose health could be compromised. For the 90th percentile, the
estimates for the coe�cients from the complete-case data (356 valid observations) were β̂0.9 =
(3.53, 0.00147,−0.0429)′ with corresponding standard errors {V̂ar(β̂0.9)}1/2 = (0.0559, 0.00133, 0.0203)′.
The estimates from the �ve completed datasets combined according to the expressions (2) and
(3) were β̂0.9 = (3.67, 0.00157,−0.0665)′ and {V̂ar(β̂0.9)}1/2 = (0.0921, 0.00233, 0.0338)′. The
direction of the e�ect of age and MVPA on BMI with the completed data was the same as those
with complete-case data. The magnitude of the e�ects was larger with completed data by about
7% for age and 55% for log(MVPA). The standard errors were larger from completed data at the
90th percentile but smaller at the lower percentiles.



The results indicated that the 90th percentile of BMI increased with age and decreased with
MVPA (Figure 1). The decrease in BMI with increasing values of MVPA was linear on the
double-log scale. On the natural scale, however, the decrease was rapid for values of MVPA
near zero but less and less pronounced as MVPA increased. The 90th percentile of BMI was
still above 30 kg/m2, the well accepted cut-o� value for obesity in adults, even in highly active
women. The analysis was extended to the other quantiles and larger sets of covariates for the
imputation models. The results were congruent with those reported and not shown for brevity.

7 Final Remarks

The imputation method proposed may prove useful in some missing data problems and may
be particularly appropriate when the research interest lies in the shape of the entire conditional
distribution of some incomplete response, not just its mean. Under the scenarios of our simulation
study, the method showed a mean squared error that was at least as small as, and sometimes
considerably smaller than, that of the other methods considered.

In addition, the proposed method enjoys all the desirable features characteristic of inference
about quantiles, which include that it (1) is robust to outliers, (2) makes no distributional
assumption about the regression coe�cients or residuals, (3) is invariant to transformations,
(4) can be applied to dependent, bounded, censored and count data, and (5) its algorithm is
computationally simple.

These features may prove useful when handling some known issues [10, p. 214]. For example,
feature (1) may improve e�ciency with respect to methods that are based on the estimation of the
mean (e.g. least-squares regression), feature (2) may circumvent the need for diagnostics of model
�tting (e.g., detection of in�uential points) and avoid convergence issues resulting from specifying
conditional densities that may be incompatible with any multivariate distribution, feature (3)
may alleviate modeling problems (e.g. imputations outside the support of the imputed variable,
non-linear relationships), and feature (4) may extend applicability to a range of di�erent types
of data.

Appendix

In this section we present a proof of Proposition 1 that uses the result in Lemma 1 along with
the fact that convergence in probability implies convergence in distribution.

Proof of Proposition 1 We use the following inequality

P (W1 ≤ c) ≤ P (W2 ≤ c+ ϵ) + P ( |W1 −W2| > ϵ) (8)

which holds for every random variable W1 and W2, every constant c, and every ϵ > 0. Then

P (Ŷ
(m)
i ≤ c) ≤ P (Ỹi ≤ c+ ϵ) + P ( |Ŷ (m)

i − Ỹi| > ϵ) (9)

P (Ŷ
(m)
i ≤ c) ≥ P (Ỹi ≤ c− ϵ)− P ( |Ŷ (m)

i − Ỹi| > ϵ) (10)

where the probabilities here and throughout are intended to be conditional on Xi = xi, Ŷ
(m)
i =

Q̂Yi|xi
(u) and Ỹi = QYi|xi

(u) with u ∼ U(0, 1). By the consistency of Q̂Yi|xi
(u) for every u ∈ (0, 1),

lim
nc→∞

P{|Q̂Yi|xi
(u)−QYi|xi

(u)| > ϵ} = P ( |Ŷ (m)
i − Ỹi| > ϵ) = 0 (11)



where nc = #C, the size of the subsample with complete observations. By concatenating the
inequalities (9) and (10) and using the limit (11),

P (Ỹi ≤ c− ϵ) ≤ lim
nc→∞

P (Ŷ
(m)
i ≤ c) ≤ P (Ỹi ≤ c+ ϵ) . (12)

Inverting the result in Lemma 1 gives that the random variable Ỹi is equal in distribution to Yi,
which implies that P (Ỹi ≤ c) = P (Yi ≤ c). Since (12) holds for every ϵ, taking the limit ϵ ↓ 0
yields

lim
nc→∞

P (Ŷ
(m)
i ≤ c) = P (Ỹi ≤ c) = P (Yi ≤ c) .

⋄
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Table 1. Bias, variance, and mean squared error of the estimators of the regression
coe�cients and the marginal mean and variance for the proposed quantile multiple imputation
(QMI) and predictive mean matching (PMM), under missing completely at random mechanism
with marginal probability of non-response 0.3, when the error term is generated from a χ2

1

distribution with sample size 500.

Bias Variance Mean Squared Error
QMI PMM QMI PMM QMI PMM Ratio

0.25-Quantile Regression
β0 -0.0014 0.0212 0.0017 0.0045 0.0010 0.0040 3.9681
β1 0.0009 0.0019 0.0040 0.0143 0.0026 0.0120 4.5851
β2 -0.0001 -0.0035 0.0005 0.0013 0.0003 0.0009 3.2463
β3 0.0025 -0.0041 0.0002 0.0006 0.0002 0.0005 2.9734

0.50-Quantile Regression
β0 -0.0054 0.0242 0.0130 0.0191 0.0080 0.0131 1.6378
β1 0.0038 0.0040 0.0305 0.0496 0.0199 0.0347 1.7428
β2 -0.0025 -0.0050 0.0035 0.0056 0.0022 0.0037 1.6554
β3 0.0058 0.0069 0.0017 0.0024 0.0009 0.0017 1.7548

0.75-Quantile Regression
β0 -0.0178 -0.0100 0.0722 0.0731 0.0484 0.0502 1.0372
β1 0.0109 0.0117 0.1585 0.1460 0.1176 0.1188 1.0107
β2 0.0020 0.0027 0.0180 0.0192 0.0118 0.0136 1.1551
β3 0.0074 0.0110 0.0086 0.0101 0.0052 0.0072 1.3987

Least-Squares Regression
β0 -0.0125 -0.0072 0.0268 0.0362 0.0144 0.0180 1.2529
β1 0.0077 0.0121 0.0584 0.0820 0.0359 0.0433 1.2044
β2 0.0003 -0.0039 0.0073 0.0102 0.0040 0.0054 1.3685
β3 0.0049 -0.0031 0.0033 0.0055 0.0016 0.0034 2.1297

Marginal Mean and Variance
µ -0.0026 -0.0044 0.0108 0.0112 0.0024 0.0026 1.1021
σ2 -0.0063 -0.0249 0.4992 0.5176 0.1219 0.1367 1.1208



Table 2. Bias, variance, and mean squared error of the estimators of the regression
coe�cients and the marginal mean and variance for the proposed quantile multiple imputation
(QMI) and predictive mean matching (PMM), under missing completely at random mechanism
with marginal probability of non-response 0.3, when the error term is generated from a t3
distribution with sample size 500.

Bias Variance Mean Squared Error
QMI PMM QMI PMM QMI PMM Ratio

0.25-Quantile Regression
β0 -0.0628 -0.0050 0.0408 0.0392 0.0317 0.0296 0.9323
β1 -0.0133 -0.0193 0.1024 0.1005 0.0702 0.0826 1.1756
β2 -0.0023 -0.0090 0.0126 0.0127 0.0078 0.0086 1.0962
β3 0.0024 -0.0100 0.0051 0.0058 0.0033 0.0039 1.1864

0.50-Quantile Regression
β0 0.0024 0.0091 0.0293 0.0309 0.0170 0.0210 1.2346
β1 -0.0041 -0.0082 0.0755 0.0839 0.0430 0.0570 1.3239
β2 -0.0019 -0.0083 0.0087 0.0100 0.0051 0.0064 1.2498
β3 0.0020 -0.0089 0.0033 0.0038 0.0021 0.0027 1.2584

0.75-Quantile Regression
β0 0.0698 0.0242 0.0428 0.0426 0.0287 0.0280 0.9760
β1 -0.0031 -0.0018 0.1052 0.1023 0.0638 0.0758 1.1885
β2 -0.0043 -0.0093 0.0126 0.0128 0.0074 0.0082 1.1197
β3 0.0045 -0.0069 0.0051 0.0053 0.0031 0.0033 1.0715

Least-Squares Regression
β0 -0.0011 0.0036 0.0437 0.0488 0.0220 0.0267 1.2158
β1 -0.0043 -0.0037 0.1100 0.1271 0.0593 0.0721 1.2151
β2 -0.0008 -0.0081 0.0130 0.0150 0.0065 0.0081 1.2431
β3 0.0140 -0.0135 0.0070 0.0109 0.0055 0.0087 1.5733

Marginal Mean and Variance
µ -0.0015 -0.0021 0.0157 0.0155 0.0037 0.0039 1.0622
σ2 -0.0492 -0.0993 4.7169 6.2335 0.5974 1.2979 2.1726



Table 3. Bias, variance, and mean squared error of the estimators of the regression
coe�cients and the marginal mean and variance for the proposed quantile multiple imputation
(QMI) and predictive mean matching (PMM), under missing completely at random mechanism
with marginal probability of non-response 0.3, when the error term is generated from a N(0, 1)
distribution with sample size 500.

Bias Variance Mean Squared Error
QMI PMM QMI PMM QMI PMM Ratio

0.25-Quantile Regression
β0 0.0012 -0.0004 0.0262 0.0245 0.0145 0.0154 1.0617
β1 0.0026 0.0041 0.0645 0.0568 0.0382 0.0395 1.0354
β2 -0.0004 -0.0026 0.0074 0.0074 0.0039 0.0044 1.1060
β3 0.0011 -0.0036 0.0058 0.0060 0.0035 0.0038 1.0941

0.50-Quantile Regression
β0 0.0009 0.0046 0.0211 0.0215 0.0110 0.0117 1.0704
β1 0.0010 -0.0017 0.0557 0.0528 0.0279 0.0298 1.0695
β2 -0.0018 -0.0050 0.0070 0.0069 0.0043 0.0042 0.9838
β3 0.0005 -0.0030 0.0050 0.0052 0.0028 0.0032 1.1352

0.75-Quantile Regression
β0 0.0022 0.0069 0.0234 0.0237 0.0139 0.0146 1.0519
β1 -0.0016 -0.0061 0.0603 0.0572 0.0359 0.0396 1.1038
β2 -0.0004 -0.0027 0.0071 0.0068 0.0044 0.0048 1.0916
β3 0.0009 -0.0020 0.0061 0.0061 0.0033 0.0038 1.1675

Least-Squares Regression
β0 -0.0031 -0.0026 0.0183 0.0186 0.0073 0.0080 1.0918
β1 0.0042 0.0046 0.0458 0.0468 0.0192 0.0206 1.0729
β2 -0.0003 -0.0018 0.0052 0.0054 0.0022 0.0025 1.1266
β3 0.0012 -0.0035 0.0041 0.0043 0.0017 0.0020 1.1378

Marginal Mean and Variance
µ 0.0003 0.0005 0.4990 0.4986 0.0009 0.0009 1.0247
σ2 0.0021 -0.0025 0.0911 0.0919 0.0229 0.0255 1.1115



Table 4. Bias, variance, and mean squared error of the estimators of the regression
coe�cients and the marginal mean and variance for the proposed quantile multiple imputation
(QMI) and predictive mean matching (PMM), under missing at random mechanism with
missing probability of non-response p = 1/[1 + exp(1− x1)], when the error term is generated
from a χ2

1 distribution with sample size 500.

Bias Variance Mean Squared Error
QMI PMM QMI PMM QMI PMM Ratio

0.25-Quantile Regression
β0 -5e-04 0.0348 0.0019 0.0073 0.0012 0.0067 5.5744
β1 8e-04 -0.0030 0.0049 0.0317 0.0035 0.0262 7.4684
β2 -6e-04 -0.0045 0.0006 0.0022 0.0004 0.0018 4.3195
β3 4e-03 -0.0099 0.0004 0.0014 0.0002 0.0013 5.5015

0.50-Quantile Regression
β0 0.0008 0.0347 0.0140 0.0230 0.0098 0.0177 1.8024
β1 -0.0068 0.0108 0.0314 0.0691 0.0278 0.0570 2.0502
β2 0.0017 -0.0009 0.0037 0.0064 0.0029 0.0049 1.6651
β3 0.0056 0.0035 0.0021 0.0034 0.0015 0.0024 1.6816

0.75-Quantile Regression
β0 0.0019 0.0160 0.0734 0.0809 0.0556 0.0612 1.1015
β1 -0.0005 0.0004 0.1665 0.1714 0.1520 0.1704 1.1207
β2 -0.0043 -0.0063 0.0194 0.0219 0.0165 0.0182 1.1032
β3 0.0058 0.0107 0.0092 0.0119 0.0067 0.0096 1.4454

Least-Squares Regression
β0 -0.0027 0.0128 0.0300 0.0440 0.0173 0.0239 1.3855
β1 0.0047 -0.0106 0.0725 0.1144 0.0522 0.0700 1.3416
β2 -0.0017 -0.0077 0.0084 0.0129 0.0056 0.0078 1.3903
β3 0.0026 -0.0092 0.0036 0.0077 0.0024 0.0057 2.3696

Marginal Mean and Variance
µ 0.0020 -0.0042 0.0114 0.0114 0.0037 0.0040 1.0671
σ2 0.0089 -0.0305 0.5332 0.5342 0.1868 0.1957 1.0474
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Figure 1. Scatter plot of body mass index (BMI) versus moderate-to-vigorous physical
activity (MVPA) on double-log (left-hand-side panel) and natural (right-hand-side panel) scale.
The solid lines from bottom to top represent the 10th, 25th, 50th, 75th, and 90th percentiles
at age 29, sample median age, estimated by multiple imputation.


